Integer realizations of disk and segment graphs

نویسندگان

  • Colin McDiarmid
  • Tobias Müller
چکیده

A disk graph is the intersection graph of disks in the plane, a unit disk graph is the intersection graph of same radius disks in the plane, and a segment graph is an intersection graph of line segments in the plane. Every disk graph can be realized by disks with centers on the integer grid and with integer radii; and similarly every unit disk graph can be realized by disks with centers on the integer grid and equal (integer) radius; and every segment graph can be realized by segments whose endpoints lie on the integer grid. Here we show that there exist disk graphs on n vertices such that in every realization by integer disks at least one coordinate or radius is 2 Ω(n) and on the other hand every disk graph can be realized by disks with integer coordinates and radii that are at most 2 O(n) ; and we show the analogous results for unit disk graphs and segment graphs. For (unit) disk graphs this answers a question of Spinrad, and for segment graphs this improves over a previous result by Kratochv́ıl and Matoušek.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Integer Programming Model and a Tabu Search Algorithm to Generate α-labeling of Special Classes of Quadratic Graphs

First, an integer programming model is proposed to find an α-labeling for quadratic graphs. Then, a Tabu search algorithm is developed to solve large scale problems. The proposed approach can generate α-labeling for special classes of quadratic graphs, not previously reported in the literature. Then, the main theorem of the paper is presented. We show how a problem in graph theory c...

متن کامل

INTEGER-MAGIC SPECTRA OF CYCLE RELATED GRAPHS

For any h in N , a graph G = (V, E) is said to be h-magic if there exists a labeling l: E(G) to Z_{h}-{0} such that the induced vertex set labeling l^{+: V(G) to Z_{h}} defined by l^{+}(v)= Summation of l(uv)such that e=uvin in E(G) is a constant map. For a given graph G, the set of all for which G is h-magic is called the integer-magic spectrum of G and is denoted by IM(G). In this paper, the ...

متن کامل

Recognition and Complexity of Point Visibility Graphs

A point visibility graph is a graph induced by a set of points in the plane, where every vertex corresponds to a point, and two vertices are adjacent whenever the two corresponding points are visible from each other, that is, the open segment between them does not contain any other point of the set. We study the recognition problem for point visibility graphs: given a simple undirected graph, d...

متن کامل

The Tree of Trees: on methods for finding all non-isomorphic tree-realizations of degree sequences

A degree sequence for a graph is a list of positive integers, one for every vertex, where each integer corresponds to the number of neighbors of that vertex. It is possible to create sequences that have no corresponding graphs, as well as sequences that correspond to multiple distinct (i.e., non-isomorphic) graphs. A graph that corresponds to a given degree sequence is called a realization of t...

متن کامل

On Geometric Spanners of Euclidean Graphs and their Applications in Wireless Networks

We consider the problem of constructing a bounded-degree planar geometric spanner for a unit disk graph modeling a wireless network. The related problem of constructing a planar geometric spanner of a Euclidean graph has been extensively studied in the literature. It is well known that the Delaunay subgraph is a planar geometric spanner with stretch factor ; however, its degree may not be bound...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. B

دوره 103  شماره 

صفحات  -

تاریخ انتشار 2013